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Abstract

There is a practical interest in developing semiconductors with levels situated within their band gap while preventing the non-radiative

recombination that these levels promote. In this paper, the physical causes of this non-radiative recombination are analyzed and the

increase in the density of the impurities responsible for the mid-gap levels to the point of forming bands is suggested as the means of

suppressing the recombination. Simple models supporting this recommendation and helping in its quantification are presented.
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1. Introduction

The use of intermediate bands (IB) or levels lying within
the band gap of a semiconductor has been proposed [1–3]
as a means of manufacturing solar cells with efficiencies of
up to 63.3% in ideal conditions. These cells have been
implemented with quantum dots that provide the mid-gap
level [4], but actual efficiencies have been limited to 10% as
a result of weak sub-band absorption and excessive non-
radiative recombination among other reasons. We believe
that the use of alloys containing a large density of centers
able to absorb sub-band gap photons has a higher potential
than solutions based on nanotechnology.

Mid-gap levels in semiconductors have been well known
for long time. They constitute the so-called deep energy
traps and are known to act as very effective recombination
centers, thus jeopardizing the potential of IB solar cells.

In this paper we give arguments that suggest that,
surprisingly, sufficiently high densities of traps introducing
deep energy levels will suppress the non-radiative recombi-
nation and thus produce promising IB materials for solar
cells.
front matter r 2006 Elsevier B.V. All rights reserved.
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We looked at this conjecture [5] before publishing the
arguments here and have subsequently promoted research,
using band calculation methods, for alloys producing a
suitable IB [6–11].
Recombination can be radiative and non-radiative. The

first mechanism is unavoidable because it is a detailed
balance counterpart of the generation through light
absorption. A solar cell in which recombination processes
are exclusively radiative may reach its efficiency limit [12].
For non-radiative recombination, several mechanisms

are known to exist [13–16]. In Auger recombination, the
energy of a recombining electron–hole pair is transmitted
to another electron. It can be enhanced by impurities but,
in general, it is not important except in highly doped
semiconductors or at very high levels of carrier injection. In
the rest of the non-radiative recombination processes, the
energy is transferred to phonons. The statistics of this
mechanism were studied in the pioneering works by
Shockley, Read and Hall (SRH) [17,18]. However, the
physical nature of the mechanism underlying this recombi-
nation has remained obscure for years as the energy to be
removed from a recombination event is much larger than
the energy of a single phonon; in fact, it amounts to a few
hundreds of millielectronvolts. For this type of recombina-
tion, several mechanisms have been proposed. Among
them, the currently most widely accepted one is the lattice
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relaxation multiphonon emission (MPE) mechanism,
which was first proposed by Lang and Henry [19]. They
based their work on the early model suggested by Seitz [20],
in connection with the quenching of luminescence and
which was further developed by Huan and Rhys [21] to
explain the absorption line broadening of F-centers in
alkaline halides.

The most important points of our argumentation are
related to the so-called Anderson [22] and Mott [23]
transitions, which determine whether the eigenfunctions of
the Hamiltonian of an array of atoms will be a set of wave
functions associated to the different atoms or they will be
extended wave functions expanding over all the atoms in
the array.

This paper is organized as follows: after this introduction
we devote a section to refreshing the fundamentals upon
which the mechanisms governing the recombination are
based, including the use of the so-called configuration
diagrams. Then, the lattice relaxation multi-phonon emis-
sion mechanism, which is responsible for the SRH
recombination, is described. Finally, the argumentation
on how to suppress this mechanism is developed, first
according to the Anderson mechanisms based on the lack
of homogeneity followed by the Mott mechanisms
associated to the basic electron–electron interaction. A
rough quantification of these effects is introduced, in the
first case, with the help of a simplified model.

2. Background

2.1. Fundamentals

For the analysis of solids, advantage is taken of the big
difference in mass between electrons and nuclei. First, a
Schrödinger equation associated to the fast electrons is
solved in which the positions of the nuclei are taken as
parameters that provide the external potential. Once this is
done, the electronic energy obtained is introduced into the
total Hamiltonian leading to a purely nuclear equation in
which the electronic energy appears thus completing the
potential energy of the nuclei.

The difference between the aforementioned treatment
and the non-approximated Hamiltonian leads to a non-
adiabatic term which may be treated as a perturbation that
induces transitions from state to state, where the states are
those defined in the adiabatic framework.

For the solution of the fast electronic Schrödinger
equation, the multi-electronic eigenvectors are split into a
set of one-electron eigenvectors (Slater determinants) and a
self-consistent calculation [24] is undertaken using one-
electron Hamiltonians in which the influence of the other
electrons appears as Coulomb repulsion and exchange
terms. Every one-electron wave function is expressed as a
linear combination of previously selected base functions.
The obtained solutions for the one-electron eigenvectors
correspond to a given set of nuclei positions. Now we must
move the nuclei positions until a lattice-relaxed minimum
energy is achieved for the total nuclei-plus-electrons
system.
In the preceding calculation, not all the one-electron

eigenstates (as many as base functions) are filled with
electrons, but only some of them, up to the number of total
electrons in the crystal. Only the filled states participate in
the Coulomb repulsion and the exchange terms. Selecting
them in order to get the lowest energy is the choice that
leads to the calculation of the fundamental state.
In materials with an ‘‘impurity’’, the impurity produces a

potential that is different from those of the host atoms and
provides special base functions which are also different
from those of the host atoms (if the base function is made
up of localized functions, rather than a set of plane waves).
For certain impurities, one or several energy eigenvalues
will appear in the middle of the semiconductor gap and
their eigenfunctions will have a strong projection on the
base functions provided by the impurity.
Deep-level impurities, with eigenvalues in the mid-gap,

will produce eigenfunctions which are strongly localized
and that may be empty and then filled (or vice versa)
during the recombination process. In the case of a metallic
IB material (e.g. Ti in GaAs and GaP and Cr in ZnS and
ZnTe) some filled one-electron wave functions in the
fundamental state are in the IB [6–11].

2.2. Configuration diagrams

The electronic energy (of all the electrons) for unrelaxed
lattice situations becomes a part of the potential energy of
the nuclei necessary to study the lattice dynamics. The
nuclear energy is usually combined with the electronic
energy to draw the so-called ‘‘combined potential energy’’
configuration diagrams. The deviation of the nuclei with
respect to their equilibrium position can be expanded to the
second order leading to a quadratic form of the combined
potential energy of the type U ¼

P
i;jbijdRidRj . This

expression can be represented as a two-dimensional plot
if, for example, we set a value for all the dRi save one.
However, the most illustrative of these two-dimensional
plots are those representing the potential energy along a
line of maximum slope parameterized by q (the length of
the line in the multidimensional dRi space).
In the configuration diagrams the electronic energy

usually refers to a single electron while the nuclear energy is
associated to the whole crystal. We can divide the latter by
the number of electrons to account for homogeneous
concepts.
An example of a configuration diagram is represented in

Fig. 1. Let us consider, for the moment, the branches in the
figure associated to the valence band (VB) and the
conduction band (CB). For them, in the position of
equilibrium (q ¼ 0), the energy corresponds to the top of
the VB and the bottom of the CB. For other values of q,
the branches represent the total potential energy (of
electrons and nuclei referred to one electron) as described
above and, by definition, the curve in the CB is just a
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Fig. 1. Configuration diagram illustrating the potential energy of the

nuclear equation (including electrons and nuclei) per electron along the

line of maximum potential slope parameterized by q.
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vertical displacement of the curve for the VB. The
horizontal lines correspond to the total energy determined
by the nuclei kinetic energy plus the potential energy.

Let us consider now one impurity with at least one deep-
level state which is empty. Let us assume that we fill this
virtual deep-level state with one electron. We call this
electron a trapped electron. The new band calculation will
now involve an impurity excited state. Now the Coulomb
repulsion and exchange terms have a localized component
which is different from those in the fundamental state. As it
is widely accepted (which we shall discus further later in
this section), the relaxed position of the impurity atom
once it is charged is different from the previous one. For
the rest, some changes may also occur, particularly for the
neighboring ones but, obviously, most of the atoms in the
lattice remain unchanged.

Let us also draw in Fig. 1 the configuration diagram
along the line of maximum slope joining the old
equilibrium position qeq:empty ¼ 0 and the new one
qeq:fulla0 for the filled trap. This includes the electronic
energy of the filled trap at the new relaxation position
qeq:full plus the total potential energy (per electron) U.
Indeed the U-shaped curve may have changed with respect
to those for the empty trap used for the VB and the CB.
However, beyond the displacement we have just described,
this change must be small because the number of
unmodified electrons is very large. In other words, the b

coefficients can sometimes be considered unchanged.
It is also useful to plot in Fig. 1 the VB and CB combined

potential energies (per electron) corresponding to the
situation where the trap is empty, as a function of the
impurity displacement (along the maximum slope line), and
the same function for the trap when it is filled.

This is because, in the subsequent analysis, transitions
will occur from band states calculated when the trap is
empty to states in the trap once it is filled and from filled
trap states to states in the bands once the trap is emptied.
Huang and Rhys [21], in their pioneering work,

evaluated the displacement of the configuration diagram
arising from an impurity by considering the crystal as a
continuous elastic medium which is polarized by the
electric field (potential gradient) created by the impurity.
The potential energy obtained using this approach is a
quadratic form to which a set of linear terms are added and
whose coefficients are a function of the electric field. This,
again, represents a quadratic form whose center is
displaced by an amount that depends on the electric field
plus an ‘‘independent’’ term also dependent on it. This
looks similar to what we have drawn in Fig. 1.

3. The lattice relaxation MPE non-radiative recombination

mechanism

For the explanation of the MPE non-radiative recombi-
nation mechanism we refer again to Fig. 1. Note that the
trap-full deep-level curve crosses the trap-empty CB curve
at point A. By means of non-adiabatic perturbation,
transitions are induced between the thermally excited
states of electrons in the CB (either the electron or the
lattice or both can be excited) to the trap-filled deep-level
near point A. Capture cross sections have been calculated
under different approximations by several authors [25–31].
In general, it is found that the electron capture cross-
section of the SRH statistics has a temperature dependence
of the type exp(–Wn/kT) (see Fig. 1).
Once the electron is captured in the trap it remains there

but the energy lost in the electronic state is largely devoted
to keeping the impurity in a violent vibrational state—a
‘‘breathing’’ mode—much stronger than the usual thermal
oscillations of the lattice atoms. This strong vibrational
state would last forever if the lattice were isolated but, in
reality, it is subsequently dissipated by interaction with the
electrons in the bands that absorb and emit phonons in the
usual way (through the non-adiabatic perturbation) for
reestablishing the thermal equilibrium so that, in balance,
some few tens of phonons (the Huang–Rhys factor) are
emitted after the capture process. This gives its name to the
MPE recombination process.
The hole capture is the process by which the filled trap

releases its electron to an (unoccupied) VB eigenfunction.
To do it, the electron in the trap has to be thermally
excited, now essentially by impurity vibrations, until it
reaches the vecinity of the energy of point B in Fig. 1. Once
the transition is produced, the energy lost by the electronic
state is mostly used in a new breathing mode (now around
qeq:empty ¼ 0) and subsequently dissipated in the afore-
mentioned way. Here, the hole capture cross-section is
proportional to exp(–Wp/kT).
The emission processes are the detailed balance counter-

parts of the aforementioned capture processes. The SRH
statistics can be readily applied. In this case, the trap has an
energy ET which is that of the minimum of the displaced
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curve, when the trap is full. The energy of the trap when it
is empty is of little interest in this discussion.

If we summarize the conditions for the MPE mechanism
to appear, we must attribute the highest weight to the fact
that certain deep-level impurities have a state that is usually
empty but can become filled. When this occurs, the new
situation of the charge distribution in the crystal is such
that the impurity is displaced from its equilibrium position.
In a configuration diagram this is revealed by the
appearance of the branch of combined potential energy
(per electron) of the impurity that presents its minimum
out of the fundamental-state equilibrium position. The
relaxation to the new position emits enough phonons to
justify the electronic energy decrease associated to trap-
ping. In the same way, the return to the equilibrium
position when the electron is released to the VB, emits
enough phonons to justify the reduction in energy when
the electron occupies its final fundamental state position in
the VB.

4. Suppressing the lattice relaxation MPE mechanisms

4.1. Disorder-related argumentation

When several atoms are located together, the eigenfunc-
tions belonging to each individual atom become deloca-
lized and are shared by all atoms (as eigenfunctions of the
array). In principle this occurs no matter the distance
between the atoms of the crystal or cluster of atoms. In
practice, leaving aside for the moment the electron–elec-
tron interaction, as the atoms may be not exactly equal, the
sharing of the eigenfunctions only occurs when the
interaction effect is bigger than the natural variations of
the individual atoms [22].

This can be applied to the ordinary atoms forming a
crystal. As the atoms are close enough to present a strong
interaction, the minor variations of the potential resulting
from stresses and other imperfections are not able to
prevent the individual eigenfunctions to be shared between
many atoms and the Bloch-function scheme describes the
reality properly.

On the contrary, the impurities, even if they are of the
same species, are usually so sparse that their interaction
does not prevail over the variations in the single-impurity
Hamiltonian resulting from stresses and other imperfec-
tions. Consequently, the impurity eigenfunctions remain
localized around every individual impurity. This has a very
important consequence in the occurrence of the MPE
mechanism. As a matter of fact, it provides the electric
charge that displaces the impurity from its position when
filled with a trapped electron and therefore induces MPE
recombination as explained in preceding sections.

Conversely, if an unusually high density of impurities is
added, the interaction between the impurities may provoke
the sharing of the eigenfuctions between all the impurities
and, if this occurs, the charge is distributed between so
many impurities in the filling of the trap that no real
change in charge can be observed in any specific location.
Consequently, no impurity displacement is produced and
the basic mechanism associated to the relaxation to the new
position, which is consubstantial to the MPE non-radiative
recombination, cannot be produced.
The preceding argumentation is the core of what we

want to present in this paper. In what follows we present a
simple model to support this argument and also for some
attempt at quantification. Later on, we shall discuss the
effects of the impurity electron-electron interaction that
will complete the argument.

4.2. Model on the localization and delocalization of

impurities

Let us consider an array of impurities located in a
crystalline-semiconductor host material. We consider this
material as providing an external field for the impurity
Hamiltonian. The latter will be the sum of a number of
single-impurity Hamiltonians H

ðnÞ
0 all embedded in the

semiconductor material. We shall consider a basis for the
problem to be solved made up of the normalized functions
jmi (one per impurity) that are eigenvectors of the single-
impurity Hamiltonians of eigenvalue E

ðnÞ
0 . These wave-

functions correspond to the trap state that we have been
considering in the preceding sections. As they correspond
to different Hamiltonians, they are not strictly orthogonal,
but if their overlap integral is small, they are nearly so.
Neglecting (for the moment) the electron–electron

interaction, the Schrödinger equation for this array is

H zj i ¼
X

n

H ðnÞ
X

m

cm mj i ¼ E
X

m

cm mj i: (1)

Multiplying on the left by the basis element p
� �� we getX

n;m

cm p
� ��H ðnÞ mj i ¼ E

X
m

cm pjm
� �

. (2)

In these equations, when the index of the Hamiltonian, n,
equals either the bra or the ket label (p or m), the
corresponding single-impurity eigenvalue, En

0 substitutes
the Hamiltonian. Eq. (2) can be expressed in a more
compact form as

Mc ¼ 0, (3)

where c is a column vector whose m component is cm and
M is a square matrix whose non-diagonal element in row i

and column j is given by

M
j
i ¼ ðE

ðiÞ
0 þ E

ðjÞ
0 � EÞ ijj

� �
þ
X

kaiaj

ijH ðkÞjj
� �

(4)

and whose diagonal elements are given by

Mi
i ¼ E

ðiÞ
0 � E þ

X
kai

ijH ðkÞji
� �

. (5)

If the impurities are far apart enough to consider that all
the overlap integrals or matrix elements with functions of
Hamiltonians involving more than one impurity are zero,
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Fig. 2. Projection cni ci of the 10th eigenvector in the base functions around

the 27 impurity atoms of the model. Data for E
ðiÞ
0 ¼ �1þ 0:01� i=27 eV.

a ¼ 2� 10�8 cm: (a) for a density of traps NT ¼ 1014 cm�3, L/a ¼ 1077.22

and (b) for a density of traps NT ¼ 1021 cm�3, L/a ¼ 5.
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then the matrix becomes

M ¼

�E þ E
ð1Þ
0 0 0 � � �

0 �E þ E
ð2Þ
0 0 � � �

0 0 �E þ E
ð3Þ
0 � � � � � �

� � � � � � � � � � � �

0
BBBB@

1
CCCCA

(6)

which leads to eigenvalues and eigenvectors given by Ei
0

and ij i, respectively. This means that the different
eigenvectors are localized functions around each one of
the impurities (except if several or all the energy levels are
degenerated). This behavior is found again when the
internal products ijj

� �
and matrix elements ijH ðkÞjj

� �
with

kaiaj are small.

4.3. Example of array with exponentially fading interaction

Let us take a three-dimensional array of impurities,
defined by a cubic simple translational lattice (for the
impurities, not for the host semiconductor) of side L. The
density of impurities is therefore NT ¼ 1=L3. We arbitra-
rily assume terms for the overlap integrals of the type

ijj
� �
¼ P exp �

ri � rj

�� ��
a

� �
, (7)

ijH ðkÞjj
� �

¼ H exp �
jri � rjj

a
�
jri � rkjjrj � rkj

aðjri � rkj þ jrj � rkjÞ

� �
,

(8)

which fade when the wave functions are far away (they do
not overlap) or the Hamiltonian is far from both wave
functions. In these formulas, r represents the position in the
array lattice and is a vector of the type:

ri ¼ mi; ni; pi

� �
L (9)

with m, n and p integers.
Let us consider the finite lattice made up of all the index

nodes �1, 0 and 1, amounting to 27 impurity atoms. Eqs.
(7) and (8) are then calculated assuming periodic bound-
aries; that is, /i|jS is actually evaluated as /0|j�iS and
any /i|H(k)|jS as /0|H(k�i)|j�iS (so that any impurity is
surrounded by another 26 impurities). Furthermore, we
shall assume that there is a linear spread of the isolated
impurity eigenvalue E

ðnÞ
0 amounting in total to 0.01 eV.

This is taken arbitrarily to simulate the effect of stresses
and imperfections in the crystal or the way of incorporating
the impurities into it. Its influence will be examined later.

The approximate scope of our treatment allows us to use
the following simplification which saves a lot of calcula-
tions: as the eigenvalues of the isolated atoms are all almost
equal and very close to the eigenvalues of the many-
impurities problem, we shall use ðE

ðiÞ
0 þ E

ðjÞ
0 � EÞ ¼ E0 in

Eq. (4). Furthermore we shall set P ¼ 1, H ¼ E0 and
E0 ¼ �1. We also set a ¼ 2� 10�8 which produces an
eigenvalue splitting of about 0.1 eV. This is approximately
the split found by band calculations in TiGa
31
P

32
[32] for a

Ti concentration of 2%.
With these conditions we can now evaluate several

situations according to the density of impurities. Fig. 2a,
shows the projection cni ci of the 10th eigenvector in the base
functions around the 27 impurity atoms of the model for a
density of impurities of NT ¼ 1014 cm�3. It can be seen that
the eigenvector consists of the base wave function around
the 10th impurity alone. All the charge of a trapped
electron will be located there making it possible for the
recombination induced by lattice relaxation MPE to
appear. For the other eigenvectors the same occurs around
other impurities. In fact, in this case, the matrix is almost
purely diagonal. The results of the calculation for a density
of impurities NT ¼ 1021 cm�3 is shown in Fig. 2b. In this
case, the 10th eigenvector does not have a large proportion
of it projected on any specific atom. As a matter of fact,
almost 30% of the charge is around the 1st atom but, for
the remainder, the proportion is lower. For other
eigenvectors the localization is smaller still. Most probably
the charge would be even more spread out if we took more
than the 27 atoms into our calculation. We can thus
conclude that for this large density of impurities the
displacement of the impurity at the electron capture would
be very small or negligible. Thus, the energy Wn in Fig. 1
would become very high and the electron capture by the
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impurity would become very unlikely. It is true that the
recombination rate in the SRH statistics is proportional to
the number of impurities but Wn would increase to infinity
with the decrease in the displacement,qeq:full, and the
exponential of minus Wn would decrease even faster so
that the capture cross section per impurity will decrease
much faster than the increase of impurities.

We have examined how fast this effect occurs based on
the model presented here. For densities as high as
NT ¼ 1020 cm�3, at least one of the eigenvectors remains
localized. The transition seems to occur rather abruptly
between NT ¼ 2� 1020 and 4� 1020 cm�3. We have also
examined the effect of reducing the spread in energy of the
isolated atom eigenvalue to 0.001 eV. (instead of the
0.01 eV used so far). The effect is rather small. The
threshold for de-localization is only reduced to the range
NT ¼ 1� 1020–2� 1020 cm�3.

Until now we have considered a regular array of
impurities. We may wonder if this reduction in recombina-
tion is associated to this regular nature or just to the
proximity of the impurities with no special influence
derived from its ordered positions. For this study (with
the spread in energy of the isolated atom eigenvalue set to
0.001 eV) we have located the impurities in the aforemen-
tioned regular positions but displaced in each coordinate
an amount established by a random variable of zero
average and equally distributed between �0.5 and 0.5 times
0.1 (that is, each coordinate is displaced by at most 75%
of their regular position). The result is that, in this case, the
delocalization is more difficult to achieve. In fact, it is not
easily achieved at all, no matter the density. It is almost
achieved (for most of the eigenvalues but not for all)
between NT ¼ 1� 1020–5� 1020 cm�3. It seems clear that
regularity assists a lot in the delocalization.

It is worth mentioning that the reduction of the non-
radiative recombination in a regular structure of impurities
should also enhance the radiative recombination [33,34].

4.4. Effect of the electron–electron interaction

The aforementioned arguments neglect the electron–e-
lectron interaction. However, even if we assume that the
host semiconductor is providing an external field for the
impurity wave functions, so that its electrons are not
affected by the impurity electrons, these electrons will still
interact among themselves. In consequence, many-electron
eigenvectors should be considered and treated as described
in Section 2.1.

Although this complex treatment is beyond our scope
here, it will help us to explain that single—electron
eigenfunction localization will be produced when the
impurities are sparsely distributed, even if the crystal is
perfect and the impurities strictly identical. In this case, the
eigenfunctions of all the single—impurity Hamiltonians are
all characterised by the same eigenvalue E

ðnÞ
0 ¼ E0 that—

leaving aside the electron–electron interaction—is also a
degenerate eigenvalue of the combined-impurities Hamil-
tonian, whose eigenfunctions are all the kets jni. Conse-
quently, any linear combination of these kets is also an
eigenfunction and therefore, localized and delocalized
eigenfunctions can equally take place. However, when the
electron–electron interaction is taken into account, if
delocalized functions were accepted as valid solutions,
their corresponding eigenvalues would be characterized by
higher energies than the localized ones. This is because the
overlap between the wave functions that exists in the
delocalized case causes a positive contribution to the
energy as a result of Coulomb interaction. The localized
case is, then, a better solution since it leads to lower
energies [35].
However, the eigenfunctions will delocalize when the

density of impurities increases. In this we shall follow the
original argument by Mott [23]. This argument has been
used in numerous cases and, in particular, to determine
when donor impurity bands become conductive. To our
knowledge it has not been used, even in its more evolved
forms [36], to determine when deep center bands become
conductive or, what is equivalent, when its electrons
become delocalized.
The basis of the argument is as follows: when an electron

is removed from an impurity (or atom, in the general
argument), the impurity becomes positively charged with
an electric charge e that tends to attract the electron with a
potential energy (SI unities) �e2=4pe0r. This hydrogen-like
potential energy presents bound states as well as unbound
states, according to well-known formulas. However, the
presence of a gas of (potentially) mobile electrons screens
the potential and renders it �e2 expð�lrÞ=4pe0r where l
increases with the mobile electron density. If l is high
enough—approximately the inverse of the Bohr radius—
the attracting potential ceases to be able to bound
electrons. In this case, the electrons become unbound and
a transition to delocalized electrons is produced.
Let us apply this general principle to our deep-trap

electrons. The presence of the host semiconductor electrons
introduces a dielectric constant e (potential energy
�e2=4pee0r) which accounts for the effect caused by the
impurity electron in the host material electrons (which so
far has been considered as an external potential and
therefore not affected by the impurity electron). Unlike in a
metal, the host semiconductors, with a full VB and an
empty CB, and not having any sensible residual conduc-
tivity—because the Fermi level is expected to be situated in
the IB[3]—produces no screening [37] of the potential
energy. However, the impurity electrons nj i produce a
certain screening with

l2 ¼
e2

ee0

Z
�
df ðEÞ

dE

� �
gðEÞ dE ¼

e2

ee0

Z
f ð1� f Þ

kT
gðEÞ dE,

(10)

where f is the occupation Fermi–Dirac function and gðEÞ is
the IB density of states per unity of energy and volume.
Since the IB is very narrow and is crossed by the IB Fermi
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level, we can write f ffi ð1� f Þ ffi 1
2
and

l2 ffi
e2

ee0

Z
gðEÞ

4kT
dE ffi

e2NT

2ee0kT
. (11)

Note that the density of states resulting from the spin, is
twice the number of traps.

At room temperature, kT ¼ 0.025 eV, the condition for
not retaining bound electrons in the impurity is approxi-
mately achieved when [23] laH ffi 0:888, aH ¼

4pee0_
2=m0e2 being the Bohr radius (no effective mass is

used here because the electrons concerned do not move in a
band). The combination of all this leads to a critical NT ¼

NT crit
¼ ð1:577kTee0=e2a2

H Þ which in our case results in
NT crit

¼ 5:9� 1019 cm�3. This is the value above which the
electron becomes delocalized due to the electron–electron
interaction. This value is smaller than the one based on the
disorder characteristics described in the preceding sections,
so it should be dominant.

Note that no argument here is associated to the regular
placement of the impurity atoms that, in the Mott scheme,
is not expected to affect very much the delocalization of the
electrons and consequently the suppression of the MPE
recombination.

5. Conclusions

We have reviewed the physical nature of the SRH
recombination mechanism. It is based on the displacement
of the impurity atom when it captures an electron arising
from the electric charge carried by this electron. The
relaxation of this displacement provides the phonons
necessary to compensate for the variations in electronic
energy.

Consequently, we have proposed a way of suppressing
this mechanism consisting of the increase in the density of
impurities to such a level that the distribution of the
trapped electron charge density among all the impurities
prevents the appearance of strong localized charge varia-
tions and thus the displacement of the trapping impurities.

In the light of this paper, it is clear that IB materials exist
(which has sometimes been considered doubtful), if we
consider the many semiconductors that present deep-level
impurities in such a way. The real question is now to what
extent must we increase their density to suppress the SRH
recombination. A very simple model is presented, based on
the existence of crystal imperfections that seem to indicate
that at concentrations in the range of NT ¼ 1021 cm�3, or
even less, the SRH might become suppressed if the
impurity atoms are located regularly. In addition a
substantial level of sub-band gap optical absorption (as
compared to our present QD IB solar cells [38]) could be
produced to make efficient IB cells possible. Furthermore,
arguments associated to the Mott transition establish that
concentrations of 5.9� 1019 cm�3 for the example exam-
ined would suffice to suppress this recombination, without
sensible influence, we think, of the regularity of their
position.
The fulfillment of the conditions requested here is
qualitatively equivalent to the condition of having enough
interaction of the impurity atoms as to form IBs.
The present conclusion might also be of interest not only

for IB solar cells but also for many other semiconductor
devices.
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A. McKee, J. Appl. Phys. 96 (2004) 903.

[5] A. Luque, A. Martı́, L. Cuadra, in: W.G. Madow (Ed.), Proceedings

of the 16th European Photovoltaic Solar Energy Conference, James

and James, London, 2000, pp. 59–61.

[6] P. Wahnón, C. Tablero, Phys. Rev. B. Condens. Matter 65 (2002) 1.

[7] C. Tablero, P. Wahnón, Appl. Phys. Lett. (2003) 151.

[8] J.J. Fernández, C. Tablero, P. Wahnón, Inter. J. Quantum Chem. 91

(2003) 157.

[9] C. Tablero, A. Garcı́a, J.J. Fernández, P. Palacios, P. Wahnón,

Comput. Mater. Sci. 58 (2003) 27.

[10] C. Tablero, Solid State Commun 133 (2005) 97.

[11] C. Tablero, Phys. Rev. B 72 (2005) 035213.
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